Role of Molecular Polarity in Thermal Transport of Boron Nitride–Organic Molecule Composites

Understanding the role of fillers in the thermal transport of composite materials is of great importance to engineering better materials. The filler induces material interfaces within the composite, which influence the thermal transport between the matrix and themselves. The filler can also alter th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS omega 2018-10, Vol.3 (10), p.12530-12534
Hauptverfasser: Ma, Ruimin, Wan, Xiao, Zhang, Teng, Yang, Nuo, Luo, Tengfei
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Understanding the role of fillers in the thermal transport of composite materials is of great importance to engineering better materials. The filler induces material interfaces within the composite, which influence the thermal transport between the matrix and themselves. The filler can also alter the molecular arrangement of the matrix in its vicinity, which may also impact the thermal transport ability. In this paper, molecular dynamics simulations are performed to study the thermal transport across the matrix–filler interfaces in hexagonal boron nitride (h-BN)–organic molecule composites. Four different organic molecules are studied as the matrixes. They include hexane (C6H14), hexanamine (C6H13NH2), hexanol (C6H13OH), and hexanoic acid (C5H11COOH), which feature the same molecular backbone but increasingly different polar functional groups. The nominal local thermal conductivities of the hexane matrix with varying distances to the interface are calculated to demonstrate the influence of the filler on the thermal transport properties of the matrix. It is found that a more polar matrix exhibits a higher density in the near-interface region and a higher nominal local thermal conductivity, suggesting that the interfacial interaction can impact the local heat transfer ability of the matrix. In addition, the more polar matrix also leads to a larger interfacial thermal conductance with h-BN (hexane: 90.47 ± 14.49 MW/m2 K, hexanamine: 113.38 ± 17.72 MW/m2 K, hexanol: 136.16 ± 25.12 MW/m2 K, and hexanoic acid: 155.17 ± 24.89 MW/m2 K) because of the higher matrix density near the interface and thus more atoms exchanging energy with the filler. The results of this study may provide useful information for designing composite materials for heat transfer applications.
ISSN:2470-1343
2470-1343
DOI:10.1021/acsomega.8b02338