Halloysite Nanotube-Reinforced Ion-Incorporated Hydroxyapatite-Chitosan Composite Coating on Ti-6Al-4 V Alloy for Implant Application
To develop the corrosion resistance and improve the biological performance of a titanium implant (Ti6Al4V alloy), a series of mineral (M = Zn and Mg)-substituted hydroxyapatite (MHA), chitosan-MHA (CS-MHA), halloysite nanotube-MHA (HNT-MHA), and HNT-CS-MHA composite coatings were fabricated on the a...
Gespeichert in:
Veröffentlicht in: | Journal of chemistry 2019, Vol.2019 (2019), p.1-12 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To develop the corrosion resistance and improve the biological performance of a titanium implant (Ti6Al4V alloy), a series of mineral (M = Zn and Mg)-substituted hydroxyapatite (MHA), chitosan-MHA (CS-MHA), halloysite nanotube-MHA (HNT-MHA), and HNT-CS-MHA composite coatings were fabricated on the anodized titanium alloy by electrodeposition. The surface morphology and cross section of various coated composites were investigated by high-resolution scanning electron microscopy (HR-SEM). Furthermore, the functional groups and phase structure of the composite coatings were investigated by Fourier transform infrared spectroscopy (FTIR) and X-ray diffractometry (XRD). Corrosion behaviors of the composite coatings were also investigated by polarization and impedance spectroscopy (EIS). Moreover, the cell-material interaction of the composite coating was observed in vitro with human osteoblast MG63 cells for cell proliferation at 1, 4, and 7 days of incubation. Consequently, HNT-CS-MHA-Ti may have potential applications in the field of orthopedic and dental implants. |
---|---|
ISSN: | 2090-9063 2090-9071 |
DOI: | 10.1155/2019/7472058 |