Aqueous Micelles as Solvent, Ligand, and Reaction Promoter in Catalysis
Water is considered to be the most sustainable and safest solvent. Micellar catalysis is a significant contributor to the chemistry in water. It promotes pathways involving water-sensitive intermediates and transient catalytic species under micelles’ shielding effect while also replacing costly liga...
Gespeichert in:
Veröffentlicht in: | JACS Au 2024-02, Vol.4 (2), p.301-317 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Water is considered to be the most sustainable and safest solvent. Micellar catalysis is a significant contributor to the chemistry in water. It promotes pathways involving water-sensitive intermediates and transient catalytic species under micelles’ shielding effect while also replacing costly ligands and dipolar-aprotic solvents. However, there is a lack of critical information about micellar catalysis. This includes why it works better than traditional catalysis in organic solvents, why specific rules in micellar catalysis differ from those of conventional catalysis, and how the limitations of micellar catalysis can be addressed in the future. This Perspective aims to highlight the current gaps in our understanding of micellar catalysis and provide an analysis of designer surfactants’ origin and essential components. This will also provide a fundamental understanding of micellar catalysis, including how aqueous micelles can simultaneously perform multiple functions such as solvent, ligand, and reaction promoter. |
---|---|
ISSN: | 2691-3704 2691-3704 |
DOI: | 10.1021/jacsau.3c00605 |