Modeling Structured Dependency Tree with Graph Convolutional Networks for Aspect-Level Sentiment Classification
Aspect-based sentiment analysis is a fine-grained task where the key goal is to predict sentiment polarities of one or more aspects in a given sentence. Currently, graph neural network models built upon dependency trees are widely employed for aspect-based sentiment analysis tasks. However, most exi...
Gespeichert in:
Veröffentlicht in: | Sensors (Basel, Switzerland) Switzerland), 2024-01, Vol.24 (2), p.418 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Aspect-based sentiment analysis is a fine-grained task where the key goal is to predict sentiment polarities of one or more aspects in a given sentence. Currently, graph neural network models built upon dependency trees are widely employed for aspect-based sentiment analysis tasks. However, most existing models still contain a large amount of noisy nodes that cannot precisely capture the contextual relationships between specific aspects. Meanwhile, most studies do not consider the connections between nodes without direct dependency edges but play critical roles in determining the sentiment polarity of an aspect. To address the aforementioned limitations, we propose a Structured Dependency Tree-based Graph Convolutional Network (SDTGCN) model. Specifically, we explore construction of a structured syntactic dependency graph by incorporating positional information, sentiment commonsense knowledge, part-of-speech tags, syntactic dependency distances, etc., to assign arbitrary edge weights between nodes. This enhances the connections between aspect nodes and pivotal words while weakening irrelevant node links, enabling the model to sufficiently express sentiment dependencies between specific aspects and contextual information. We utilize part-of-speech tags and dependency distances to discover relationships between pivotal nodes without direct dependencies. Finally, we aggregate node information by fully considering their importance to obtain precise aspect representations. Experimental results on five publicly available datasets demonstrate the superiority of our proposed model over state-of-the-art approaches; furthermore, the accuracy and F1-score show a significant improvement on the majority of datasets, with increases of 0.74, 0.37, 0.65, and 0.79, 0.75, 1.17, respectively. This series of enhancements highlights the effective progress made by the STDGCN model in enhancing sentiment classification performance. |
---|---|
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s24020418 |