Removal of Chlortetracycline Chlorhydrate by Photo-Fenton Process: Experimental Study and ANN Modelling
The present work aimed to study the feasibility of photo-Fenton oxidation for the degradation of chlortetracycline chlorhydrate (CTC) in aqueous solutions, as well as the modelling of system behaviour by artificial neural networks. The removal performance of CTC oxidation by the Photo-Fenton process...
Gespeichert in:
Veröffentlicht in: | Kemija u industriji; časopis kemičara i tehnologa Jugoslavije 2023-01, Vol.72 (11-12), p.627-637 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The present work aimed to study the feasibility of photo-Fenton oxidation for the degradation of chlortetracycline chlorhydrate (CTC) in aqueous solutions, as well as the modelling of system behaviour by artificial neural networks. The removal performance of CTC oxidation by the Photo-Fenton process was studied under solar radiation. Different parameters were studied, such as pH (3 to 5), and initial concentrations of CTC (0.1 to 10 mg l –1 ), hydrogen peroxide (1.701 to 190.478 mg l –1 ), and ferrous ions (2.8 to 103.6 mg l –1 ). Results showed that a high removal efficiency of 92 % was achieved at pH 3 under optimised conditions, such as 10 mg l –1 of CTC, 127.552 mg l –1 of H 2 O 2 , and 36.4 mg l –1 of Fe 2+ . The transformation of CTC molecules was proved by UV-visible and HPLC analyses, which showed that almost no CTC molecules were remaining in the treated solution. A multi-layer perceptron artificial neural network has been developed to predict the experimental removal efficiency of CTC based on four dimensionless inputs: molecular weight, and initial concentrations of CTC, hydrogen peroxide and ferrous ions. The best network has been found with a high determination coefficient of 0.9960, and with a very acceptable root mean square error 0.0108. In addition, the global sensitivity analysis confirms that the most influential parameter for the CTC removal by photo-Fenton oxidation is the initial concentration of ferrous cations with a relative importance of 33 %.
Cilj ovog rada bio je ispitati razgradnju klortetraciklin klorhidrata (CTC) u vodenoj otopini foto-Fentonovim procesom, kao i modelirati ponašanje sustava primjenom umjetnih neuronskih mreža. Učinkovitost uklanjanja CTC-a foto-Fentonovim procesom ispitana je pod sunčevom svjetlošću. Proučavani su različiti parametri poput pH (3 do 5) te početnih koncentracija CTC-a (0,1 do 10 mg l –1 ), vodikova peroksida (1,701 do 190,478 mg l –1 ) i željeznih iona (2,8 do 103,6 mg l –1 ). Dobivena je učinkovitost uklanjanja od 92 % pri pH 3, uz 10 mg l –1 CTC, 127,552 mg l –1 H 2 O 2 i 36,4 mg l –1 Fe 2+ . Koncentracija CTC-a praćena je spektrofotometrijski i tekućinskom kormatografijom, te su utvrđene neznatne koncentracije CTC-a u vodenoj otopini nakon obrade. Umjetna neuronska mreža višeslojni perceptron razvijena je za predviđanje eksperimentalne učinkovitosti uklanjanja CTC-a na temelju četiri bezdimenzionalna ulaza: molekulske mase, te početnih koncentracija CTC-a, vodikova peroksida i željeznih iona |
---|---|
ISSN: | 0022-9830 1334-9090 |
DOI: | 10.15255/KUI.2023.004 |