Optimizing Hydrogen Production: Influence of Promoters in Methane Decomposition on Titania-Modified-Zirconia Supported Fe Catalyst

This study addresses the pivotal challenge of hydrogen production through methane decomposition, offering a pathway to achieving clean energy goals. Investigating the utilization of titania-modified zirconia dual redox supports (10TiZr) in iron or doped iron-based catalysts for the CH4 decomposition...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS omega 2024-05, Vol.9 (18), p.20322-20330
Hauptverfasser: Al-Fatesh, Ahmed S., Vadodariya, Dharmesh M., Bayazed, Mohammed O., Osman, Ahmed I., Ibrahim, Ahmed Aidid, Fakeeha, Anis Hamza, Alanazi, Yousef M., Abasaeed, Ahmed E., Kumar, Rawesh
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study addresses the pivotal challenge of hydrogen production through methane decomposition, offering a pathway to achieving clean energy goals. Investigating the utilization of titania-modified zirconia dual redox supports (10TiZr) in iron or doped iron-based catalysts for the CH4 decomposition reaction, our research involves a thorough characterization process. This includes analyses of the surface area porosity, X-ray diffraction, Raman-infrared spectroscopy, and temperature-programmed reduction/oxidation. The observed sustained enhancement in catalytic activity over extended durations suggests the in situ formation of catalytically active sites. The introduction of Co or Ni into the 30Fe/10TiZr catalyst leads to the generation of a higher density of reducible species. Furthermore, the Ni-promoted 30Fe/10TiZr catalyst exhibits a lower crystallinity, indicating superior dispersion. Notably, the cobalt-promoted 30Fe/10TiZr catalyst achieves over 80% CH4 conversion and H2 yield within 3 h. Additionally, the Ni-promoted 30Fe/10TiZr catalyst attains a remarkable 87% CH4 conversion and 82% H2 yield after 3 h of the continuous process.
ISSN:2470-1343
2470-1343
DOI:10.1021/acsomega.4c00729