SGAN-IDS: Self-Attention-Based Generative Adversarial Network against Intrusion Detection Systems
In cybersecurity, a network intrusion detection system (NIDS) is a critical component in networks. It monitors network traffic and flags suspicious activities. To effectively detect malicious traffic, several detection techniques, including machine learning-based NIDSs (ML-NIDSs), have been proposed...
Gespeichert in:
Veröffentlicht in: | Sensors (Basel, Switzerland) Switzerland), 2023-09, Vol.23 (18), p.7796 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In cybersecurity, a network intrusion detection system (NIDS) is a critical component in networks. It monitors network traffic and flags suspicious activities. To effectively detect malicious traffic, several detection techniques, including machine learning-based NIDSs (ML-NIDSs), have been proposed and implemented. However, in much of the existing ML-NIDS research, the experimental settings do not accurately reflect real-world scenarios where new attacks are constantly emerging. Thus, the robustness of intrusion detection systems against zero-day and adversarial attacks is a crucial area that requires further investigation. In this paper, we introduce and develop a framework named SGAN-IDS. This framework constructs adversarial attack flows designed to evade detection by five BlackBox ML-based IDSs. SGAN-IDS employs generative adversarial networks and self-attention mechanisms to generate synthetic adversarial attack flows that are resilient to detection. Our evaluation results demonstrate that SGAN-IDS has successfully constructed adversarial flows for various attack types, reducing the detection rate of all five IDSs by an average of 15.93%. These findings underscore the robustness and broad applicability of the proposed model. |
---|---|
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s23187796 |