Quantum convolutional neural networks for high energy physics data analysis

This work presents a quantum convolutional neural network (QCNN) for the classification of high energy physics events. The proposed model is tested using a simulated dataset from the Deep Underground Neutrino Experiment. The proposed quantum architecture demonstrates an advantage of learning faster...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review research 2022-03, Vol.4 (1), p.013231, Article 013231
Hauptverfasser: Chen, Samuel Yen-Chi, Wei, Tzu-Chieh, Zhang, Chao, Yu, Haiwang, Yoo, Shinjae
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work presents a quantum convolutional neural network (QCNN) for the classification of high energy physics events. The proposed model is tested using a simulated dataset from the Deep Underground Neutrino Experiment. The proposed quantum architecture demonstrates an advantage of learning faster than the classical convolutional neural networks (CNNs) under a similar number of parameters. In addition to the faster convergence, the QCNN achieves a greater test accuracy compared to CNNs. Based on our results from numerical simulations, it is a promising direction to apply QCNN and other quantum machine learning models to high energy physics and other scientific fields.
ISSN:2643-1564
2643-1564
DOI:10.1103/PhysRevResearch.4.013231