Multi-muscle deep learning segmentation to automate the quantification of muscle fat infiltration in cervical spine conditions

Muscle fat infiltration (MFI) has been widely reported across cervical spine disorders. The quantification of MFI requires time-consuming and rater-dependent manual segmentation techniques. A convolutional neural network (CNN) model was trained to segment seven cervical spine muscle groups (left and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2021-08, Vol.11 (1), p.16567-16567, Article 16567
Hauptverfasser: Weber, Kenneth A., Abbott, Rebecca, Bojilov, Vivie, Smith, Andrew C., Wasielewski, Marie, Hastie, Trevor J., Parrish, Todd B., Mackey, Sean, Elliott, James M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Muscle fat infiltration (MFI) has been widely reported across cervical spine disorders. The quantification of MFI requires time-consuming and rater-dependent manual segmentation techniques. A convolutional neural network (CNN) model was trained to segment seven cervical spine muscle groups (left and right muscles segmented separately, 14 muscles total) from Dixon MRI scans (n = 17, 17 scans
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-021-95972-x