A telomere-to-telomere Eucalyptus regnans genome: unveiling haplotype variance in structure and genes within one of the world's tallest trees

Eucalyptus regnans (Mountain Ash) is an Australian native giant tree species which form forests that are among the highest known carbon-dense biomasses in the world. To enhance genomic studies in this ecologically important species, we assembled a high-quality, mostly telomere-to-telomere complete,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC genomics 2024-09, Vol.25 (1), p.913-12, Article 913
Hauptverfasser: Ferguson, Scott, Bar-Ness, Yoav D, Borevitz, Justin, Jones, Ashley
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Eucalyptus regnans (Mountain Ash) is an Australian native giant tree species which form forests that are among the highest known carbon-dense biomasses in the world. To enhance genomic studies in this ecologically important species, we assembled a high-quality, mostly telomere-to-telomere complete, chromosome-level, haplotype-resolved reference genome. We sampled a single tree, the Centurion, which is currently a contender for the world's tallest flowering plant. Using long-read sequencing data (PacBio HiFi, Oxford Nanopore ultra-long reads) and chromosome conformation capture data (Hi-C), we assembled the most contiguous and complete Eucalyptus reference genome to date. For each haplotype, we observed contig N50s exceeding 36 Mbp, scaffold N50s exceeding 43 Mbp, and genome BUSCO completeness exceeding 99%. The assembled genome revealed extensive structural variations between the two haplotypes, consisting mostly of insertions, deletions, duplications and translocations. Analysis of gene content revealed haplotype-specific genes, which were enriched in functional categories related to transcription, energy production and conservation. Additionally, many genes reside within structurally rearranged regions, particularly duplications, suggesting that haplotype-specific variation may contribute to environmental adaptation in the species. Our study provides a foundation for future research into E. regnans environmental adaptation, and the high-quality genome will be a powerful resource for conservation of carbon-dense giant tree forests.
ISSN:1471-2164
1471-2164
DOI:10.1186/s12864-024-10810-4