Antineoplastic Activity of 9″-Lithospermic Acid Methyl Ester in Glioblastoma Cells

To date, many potent compounds have been found which are derived from plants and herbs and possess anticancer properties due to their antioxidant effects. 9″-Lithospermic acid methyl ester is an effective natural compound derived from the Velen. It has been proven that this compound has substantial...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2024-02, Vol.25 (4), p.2094
Hauptverfasser: Tzitiridou, Panagiota, Zoi, Vasiliki, Papagrigoriou, Theodora, Lazari, Diamanto, Sioka, Chrissa, Alexiou, Georgios A, Kyritsis, Athanassios P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To date, many potent compounds have been found which are derived from plants and herbs and possess anticancer properties due to their antioxidant effects. 9″-Lithospermic acid methyl ester is an effective natural compound derived from the Velen. It has been proven that this compound has substantial properties in different diseases, but its effects in cancer have not been thoroughly evaluated. The aim of this work was to study the effects of 9″-Lithospermic acid methyl ester (9″-methyl lithospermate) in U87 and T98 glioblastoma cell lines. Its effects on cellular viability were assessed via Trypan Blue and Crystal Violet stains, the cell cycle analysis through flow cytometry, and cell migration by employing the scratch wound healing assay. The results demonstrated that 9″-methyl lithospermate was able to inhibit cellular proliferation, induce cellular death, and inhibit cell migration. Furthermore, these results were intensified by the addition of temozolomide, the most prominent chemotherapeutic drug in glioblastoma tumors. Further studies are needed to reproduce these findings in animal models and investigate if 9″-lithospermic acid methyl ester represents a potential new therapeutic addition for gliomas.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms25042094