Current Biomaterial-Based Bone Tissue Engineering and Translational Medicine

Bone defects cause significant socio-economic costs worldwide, while the clinical “gold standard” of bone repair, the autologous bone graft, has limitations including limited graft supply, secondary injury, chronic pain and infection. Therefore, to reduce surgical complexity and speed up bone healin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2021-09, Vol.22 (19), p.10233
Hauptverfasser: Qi, Jingqi, Yu, Tianqi, Hu, Bangyan, Wu, Hongwei, Ouyang, Hongwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bone defects cause significant socio-economic costs worldwide, while the clinical “gold standard” of bone repair, the autologous bone graft, has limitations including limited graft supply, secondary injury, chronic pain and infection. Therefore, to reduce surgical complexity and speed up bone healing, innovative therapies are needed. Bone tissue engineering (BTE), a new cross-disciplinary science arisen in the 21st century, creates artificial environments specially constructed to facilitate bone regeneration and growth. By combining stem cells, scaffolds and growth factors, BTE fabricates biological substitutes to restore the functions of injured bone. Although BTE has made many valuable achievements, there remain some unsolved challenges. In this review, the latest research and application of stem cells, scaffolds, and growth factors in BTE are summarized with the aim of providing references for the clinical application of BTE.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms221910233