Novel Numerical Approach Based on Modified Extended Cubic B-Spline Functions for Solving Non-Linear Time-Fractional Telegraph Equation

The telegraph model describes that the current and voltage waves can be reflected on a wire, that symmetrical wave patterns can form along a line. A numerical study of these voltage and current waves on a transferral line has been proposed via a modified extended cubic B-spline (MECBS) method. The B...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry (Basel) 2020-07, Vol.12 (7), p.1154
Hauptverfasser: Akram, Tayyaba, Abbas, Muhammad, Iqbal, Azhar, Baleanu, Dumitru, Asad, Jihad H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The telegraph model describes that the current and voltage waves can be reflected on a wire, that symmetrical wave patterns can form along a line. A numerical study of these voltage and current waves on a transferral line has been proposed via a modified extended cubic B-spline (MECBS) method. The B-spline functions have the flexibility and high order accuracy to approximate the solutions. These functions also preserve the symmetrical property. The MECBS and Crank Nicolson technique are employed to find out the solution of the non-linear time fractional telegraph equation. The time direction is discretized in the Caputo sense while the space dimension is discretized by the modified extended cubic B-spline. The non-linearity in the equation is linearized by Taylor’s series. The proposed algorithm is unconditionally stable and convergent. The numerical examples are displayed to verify the authenticity and implementation of the method.
ISSN:2073-8994
2073-8994
DOI:10.3390/sym12071154