Bacterial micro-aggregates as inoculum in animal models of implant-associated infections

Is it time to rethink the inoculum of animal models of implant-associated infections (IAI)? Traditionally, animal models of IAI are based on inoculation with metabolically active overnight cultures of planktonic bacteria or pre-grown surface-attached biofilms. However, such inoculums do not mimic th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biofilm 2024-06, Vol.7, p.100200-100200, Article 100200
Hauptverfasser: Top Hartmann, Katrine, Lund Nielsen, Regitze, Mikkelsen, Freja Cecilie, Aalbæk, Bent, Lichtenberg, Mads, Holm Jakobsen, Tim, Bjarnsholt, Thomas, Kvich, Lasse, Ingmer, Hanne, Odgaard, Anders, Elvang Jensen, Henrik, Kruse Jensen, Louise
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Is it time to rethink the inoculum of animal models of implant-associated infections (IAI)? Traditionally, animal models of IAI are based on inoculation with metabolically active overnight cultures of planktonic bacteria or pre-grown surface-attached biofilms. However, such inoculums do not mimic the clinical initiation of IAI. Therefore, the present study aimed to develop a clinically relevant inoculum of low metabolic micro-aggregated bacteria. The porcine Staphylococcus aureus strain S54F9 was cultured in Tryptone Soya Broth (TSB) for seven days to facilitate the formation of low metabolic micro-aggregates. Subsequently, the aggregated culture underwent filtration using cell strainers of different pore sizes to separate micro-aggregates. Light microscopy was used to evaluate the aggregate formation and size in the different fractions, while isothermal microcalorimetry was used to disclose a low metabolic activity. The micro-aggregate fraction obtained with filter size 5–15 μm (actual measured mean size 32 μm) was used as inoculum in a porcine implant-associated osteomyelitis (IAO) model and compared to a standard overnight planktonic inoculum and a sham inoculum of 0.9 % saline. The micro-aggregate and planktonic inoculums caused IAO with the re-isolation of S. aureus from soft tissues, bones, and implants. However, compared to their planktonic counterpart, neither of the micro-aggregate inoculated animals showed signs of osteomyelitis, i.e., sequester, osteolysis, and pus at gross inspection. Furthermore, inoculation with low metabolic micro-aggregates resulted in a strong healing response with pronounced osteoid formation, comparable to sham animals. In conclusion, the formation and separation of low metabolic bacterial micro-aggregates into various size fractions is possible, however, planktonic bacteria were still seen in all size fractions. Inoculation with micro-aggregates caused a less-aggressive osteomyelitis i.e. combination of infected tissue and strong healing response. Therefore, the use of low metabolic micro-aggregates could be a relevant inoculum for animal models of less-aggressive and thereby slower developing IAI and add in to our understanding of the host-implant-bacteria interactions in slow-onset low-grade infections.
ISSN:2590-2075
2590-2075
DOI:10.1016/j.bioflm.2024.100200