Newton-like Normal S-iteration under Weak Conditions

In the present paper, we introduced a quadratically convergent Newton-like normal S-iteration method free from the second derivative for the solution of nonlinear equations permitting f′(x)=0 at some points in the neighborhood of the root. Our proposed method works well when the Newton method fails...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Axioms 2023-03, Vol.12 (3), p.283
Hauptverfasser: Singh, Manoj K., Argyros, Ioannis K., Singh, Arvind K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the present paper, we introduced a quadratically convergent Newton-like normal S-iteration method free from the second derivative for the solution of nonlinear equations permitting f′(x)=0 at some points in the neighborhood of the root. Our proposed method works well when the Newton method fails and performs even better than some higher-order converging methods. Numerical results verified that the Newton-like normal S-iteration method converges faster than Fang et al.’s method. We studied different aspects of the normal S-iteration method regarding the faster convergence to the root. Lastly, the dynamic results support the numerical results and explain the convergence, divergence, and stability of the proposed method.
ISSN:2075-1680
2075-1680
DOI:10.3390/axioms12030283