Perfect 3-colorings of the cubic graphs of order 10
Perfect coloring is a generalization of the notion of completely regular codes, given by Delsarte. A perfect m-coloring of a graph G with m colors is a partition of the vertex set of G into m parts A_1, A_2, ..., A_m such that, for all $ i,j \in \lbrace 1, ... , m \rbrace $, every vertex of A_i is a...
Gespeichert in:
Veröffentlicht in: | Electronic journal of graph theory and applications 2017-01, Vol.5 (2), p.194-206 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Perfect coloring is a generalization of the notion of completely regular codes, given by Delsarte. A perfect m-coloring of a graph G with m colors is a partition of the vertex set of G into m parts A_1, A_2, ..., A_m such that, for all $ i,j \in \lbrace 1, ... , m \rbrace $, every vertex of A_i is adjacent to the same number of vertices, namely, a_{ij} vertices, of A_j. The matrix $A=(a_{ij})_{i,j\in \lbrace 1,... ,m\rbrace }$, is called the parameter matrix.
We study the perfect 3-colorings (also known as the equitable partitions into three parts) of the cubic graphs of order 10. In particular, we classify all the realizable parameter matrices of perfect 3-colorings for the cubic graphs of order 10. |
---|---|
ISSN: | 2338-2287 2338-2287 |
DOI: | 10.5614/ejgta.2017.5.2.3 |