Ground states to a Kirchhoff equation with fractional Laplacian
The aim of this paper is to deal with the Kirchhoff type equation involving fractional Laplacian operator \begin{document}$ \left(\alpha+\beta \int_{\mathbb{R}^{3}}|(-\Delta)^{\frac{s}{2}}\psi|^{2}\,\mathrm{d} x\right)(-\Delta)^{s}\psi+\kappa \psi = |\psi|^{p-2}\psi \ \ \ \mbox{in} \ \mathbb{R}^{3...
Gespeichert in:
Veröffentlicht in: | AIMS mathematics 2023-01, Vol.8 (10), p.24473-24483 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The aim of this paper is to deal with the Kirchhoff type equation involving fractional Laplacian operator
\begin{document}$ \left(\alpha+\beta \int_{\mathbb{R}^{3}}|(-\Delta)^{\frac{s}{2}}\psi|^{2}\,\mathrm{d} x\right)(-\Delta)^{s}\psi+\kappa \psi = |\psi|^{p-2}\psi \ \ \ \mbox{in} \ \mathbb{R}^{3}, $\end{document}
where $ \alpha, \beta, \kappa > 0 $ are constants. By constructing a Palais-Smale-Pohozaev sequence at the minimax value $ c_{mp} $, the existence of ground state solutions to this equation for all $ p\in(2, 2_{s}^{*}) $ is established by variational arguments. Furthermore, the decay property of the ground state solution is also investigated. |
---|---|
ISSN: | 2473-6988 2473-6988 |
DOI: | 10.3934/math.20231248 |