Universal inequalities of the poly-drifting Laplacian on smooth metric measure spaces
In this paper, we study the eigenvalue problem of poly-drifting Laplacian on complete smooth metric measure space , with nonnegative weighted Ricci curvature for some , which is uniformly bounded from above, and successfully obtain several universal inequalities of this eigenvalue problem.
Gespeichert in:
Veröffentlicht in: | Open mathematics (Warsaw, Poland) Poland), 2021-10, Vol.19 (1), p.1110-1119 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we study the eigenvalue problem of poly-drifting Laplacian on complete smooth metric measure space
, with nonnegative weighted Ricci curvature
for some
, which is uniformly bounded from above, and successfully obtain several universal inequalities of this eigenvalue problem. |
---|---|
ISSN: | 2391-5455 2391-5455 |
DOI: | 10.1515/math-2021-0100 |