Fuzzy logic-based vehicle safety estimation using V2V communications and on-board embedded ROS-based architecture for safe traffic management system in hail city
Estimating the state of surrounding vehicles is crucial to either prevent or avoid collisions with other road users. However, due to insufficient historical data and the unpredictability of future driving tactics, estimating the safety status is a difficult undertaking. To address this problem, an i...
Gespeichert in:
Veröffentlicht in: | Electronic research archive 2023-01, Vol.31 (8), p.5083-5103 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Estimating the state of surrounding vehicles is crucial to either prevent or avoid collisions with other road users. However, due to insufficient historical data and the unpredictability of future driving tactics, estimating the safety status is a difficult undertaking. To address this problem, an intelligent and autonomous traffic management system based on V2V technology is proposed. The main contribution of this work is to design a new system that uses a real-time control system and a fuzzy logic algorithm to estimate safety. The robot operating system (ROS) is the foundation of the control architechture, which connects all the various system nodes and generates the decision in the form of a speech and graphical message. The safe path is determined by a safety evaluation system that combines sensor data with a fuzzy classifier. Moreover, the suitable information processed by each vehicle unit is shared in the group to avoid unexpected problems related to speed, sudden braking, unplanned deviation, street holes, road bumps, and any kind of street issues. The connection is provided through a network based on the ZigBee protocol. The results of vehicle tests show that the proposed method provides a more reliable estimate of safety as compared to other methods. |
---|---|
ISSN: | 2688-1594 2688-1594 |
DOI: | 10.3934/era.2023260 |