Catalytic Degradation of Lignin over Sulfonyl-Chloride-Modified Lignin-Based Porous Carbon-Supported Metal Phthalocyanine: Effect of Catalyst Concentrations
A sulfonyl-chloride-modified lignin-based porous carbon-supported metal phthalocyanine catalyst was prepared and used to replace the traditional Fenton's reagent for lignin degradation. The catalyst underwent a detailed characterization analysis in terms of functional group distributions, surfa...
Gespeichert in:
Veröffentlicht in: | Molecules (Basel, Switzerland) Switzerland), 2024-01, Vol.29 (2), p.347 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A sulfonyl-chloride-modified lignin-based porous carbon-supported metal phthalocyanine catalyst was prepared and used to replace the traditional Fenton's reagent for lignin degradation. The catalyst underwent a detailed characterization analysis in terms of functional group distributions, surface area, morphological structure, via FT-IR, XPS, BET, and SEM. The catalyst possessed a specific surface area of 638.98 m
/g and a pore volume of 0.291 cm
/g. The prepared catalyst was studied for its ability of oxidative degradation of lignin under different reaction conditions. By optimizing the reaction conditions, a maximum liquid product yield of 38.94% was obtained at 135 °C with 3.5 wt% of catalyst and 15 × 10
mol/L H
O
; at the same time, a maximum phenols selectivity of 32.58% was achieved. The compositions and properties of liquid products obtained from lignin degradation using different catalyst concentrations were studied comparatively via GC-MS, FT-IR,
H-NMR, and EA. Furthermore, the structure changes of solid residues are also discussed. |
---|---|
ISSN: | 1420-3049 1420-3049 |
DOI: | 10.3390/molecules29020347 |