Estimating highest capacity propulsion performance using backward-directed force during walking evaluation for individuals with acquired brain injury
There are over 5.3 million Americans who face acquired brain injury (ABI)-related disability as well as almost 800,000 who suffer from stroke each year. To improve mobility and quality of life, rehabilitation professionals often focus on walking recovery soon after hospital discharge for ABI. Reduce...
Gespeichert in:
Veröffentlicht in: | Journal of neuroengineering and rehabilitation 2024-08, Vol.21 (1), p.134-9, Article 134 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | There are over 5.3 million Americans who face acquired brain injury (ABI)-related disability as well as almost 800,000 who suffer from stroke each year. To improve mobility and quality of life, rehabilitation professionals often focus on walking recovery soon after hospital discharge for ABI. Reduced propulsion capacity (force output of the lower limbs to counteract ground reaction forces) negatively impacts walking ability and complicates recovery during rehabilitation for brain injured people. We describe a method, using backward-directed resistance (BDR) in a robotic-based treadmill device, to allow measurement of maximum walking propulsion force (MWPF) that is not otherwise possible during overground walking assessment. Our objective was to test the construct validity of a maximum walking propulsion force (MWPF) measure that reflects a person's propulsive strength against applied BDR, while walking on a robotic treadmill-based device for participants with acquired brain injury (ABI). Our study enrolled 14 participants with ABI at an in inpatient rehabilitation in Galveston, TX from 8/1/21 - 4/31/22. The range of weight-adjusted MWPF was 2.6-27.1% body weight (%BW), mean 16.5 ± 8.4%BW, reflecting a wide range of propulsive force capability. The strongest correlation with overground tests was between the 6-minute walk test (6-MWT) distance and the MWPF values (r = 0.83, p |
---|---|
ISSN: | 1743-0003 1743-0003 |
DOI: | 10.1186/s12984-024-01428-4 |