Analytical Calculation for Multi-Infeed Interaction Factors Considering Control Modes of High Voltage Direct Current Links

The multi-infeed interaction factor (MIIF) is used extensively in indicating the degree of interaction among high-voltage direct current (HVDC) converters and is currently calculated by simulation methods according to the definition, or by using the equivalent impedance ratio method. The first metho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) 2018-06, Vol.11 (6), p.1506
Hauptverfasser: Xia, Chengjun, Hua, Xia, Wang, Zhen, Huang, Zhenlin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The multi-infeed interaction factor (MIIF) is used extensively in indicating the degree of interaction among high-voltage direct current (HVDC) converters and is currently calculated by simulation methods according to the definition, or by using the equivalent impedance ratio method. The first method is an experimental calculation method and the second method does not account for the effects of HVDC control modes. An analytical calculation method for MIIF considering control modes of HVDC links is proposed in this paper. First, the voltage variation of converter bus in the context of small disturbance is equated by using the bus impedance matrix. In this way the equations for the solution of MIIF considering HVDC control mode are obtained. Subsequently, based on two rational assumptions, the practical analytical calculation expression of MIIF is deduced in detail. The MIIF calculation method proposed in this paper is an improvement of the equivalent impedance ratio method and reflects the main influencing factors of voltage interaction including HVDC control modes. Moreover, the derived analytical expression can give a fundamental insight into parameter dependencies of voltage interaction. Finally, the validity and accuracy of the proposed approach are demonstrated in both dual-infeed HVDC system and actual large-scale power grid.
ISSN:1996-1073
1996-1073
DOI:10.3390/en11061506