Microwave-Assisted Production of Defibrillated Lignocelluloses from Blackcurrant Pomace via Citric Acid and Acid-Free Conditions
Blackcurrant pomace (BCP) is an example of an annual, high-volume, under-utilized renewable resource with potential to generate chemicals, materials and bioenergy within the context of a zero-waste biorefinery. Herein, the microwave-assisted isolation, characterization and potential application of d...
Gespeichert in:
Veröffentlicht in: | Molecules (Basel, Switzerland) Switzerland), 2024-11, Vol.29 (23), p.5665 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Blackcurrant pomace (BCP) is an example of an annual, high-volume, under-utilized renewable resource with potential to generate chemicals, materials and bioenergy within the context of a zero-waste biorefinery. Herein, the microwave-assisted isolation, characterization and potential application of defibrillated lignocelluloses from depectinated blackcurrant pomace are reported. Depectination was achieved using citric acid (0.2-0.8 M, 80 °C, 2 h, conventional heating) and compared with acid-free hydrothermal microwave-assisted processing (1500 W, 100-160 °C, 30 min). The resultant depectinated residues were subjected to microwave-assisted hydrothermal defibrillation to afford two classes of materials: namely, (i) hydrothermal acid-free microwave-assisted (1500 W, 160 °C, 30 min; DFC-M1-M4), and (ii) hydrothermal citric acid microwave-assisted (1500 W, 160 °C, 30 min; DFC-C1-C4). Thermogravimetric analysis (TGA) revealed that the thermal stability with respect to native BCP (T
= 330 °C) was higher for DFC-M1-M4 (T
= 345-348 °C) and lower for DFC-C1-C4 (322-325 °C). Both classes of material showed good propensity to hold water but failed to form stable hydrogels (5-7.5 wt% in water) unless they underwent bleaching which removed residual lignin and hemicellulosic matter, as evidenced by
C solid-state NMR spectroscopy. The hydrogels made from bleached DFC-C1-C4 (7.5 wt%) and bleached DFC-M1-M4 (5 wt%) exhibited rheological viscoelastic, shear thinning, and time-dependent behaviour, which highlights the potential opportunity afforded by microwave-assisted defibrillation of BCP for food applications. |
---|---|
ISSN: | 1420-3049 1420-3049 |
DOI: | 10.3390/molecules29235665 |