Evaluation of The Performance of Hot Mix Aspahalt with Natural Rubber (Latex) for Asphalt Concrete- Binder Course (AC-BC)

This study aims to measure the performance of the Hot Mix Asphalt for Asphalt Concrete Binder Course (AC-BC) with addition of natural rubber (latex) at variations of 0%, 2% and 3% by weight. The method used in this study is an experimental method in a laboratory that consists of natural aggregate te...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Jurnal Teknik Sipil 2020-12, Vol.27 (3), p.217-222
Hauptverfasser: Utami, Faradina, Subagio, Bambang Sugeng, Kusumawati, Aine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study aims to measure the performance of the Hot Mix Asphalt for Asphalt Concrete Binder Course (AC-BC) with addition of natural rubber (latex) at variations of 0%, 2% and 3% by weight. The method used in this study is an experimental method in a laboratory that consists of natural aggregate testing, rheology testing for asphalt pen 60/70 and asphalt pen 60/70 plus natural rubber (latex) and AC-BC mixture testing. The method used is Marshall Test to obtain optimum asphalt content (OAC) and another method consists of UMATTA Resilient Modulus Test and strain controlled Four Points Fatigue Test. The addition of natural rubber in the AC-BC mixture reduced the optimum asphalt content (OAC) and increased the Marshall stability value, the optimum percentage is 3% natural rubber (latex) with the lowest OAC of 5.4% and the highest Marshall stability. The UMATTA test with 2% natural rubber (latex) resulted in the highest Resilient Modulus value compared to the other two blends. Fatigue testing at strain 500 με, 600 με, and 700 με resulted that the mixture of AC-BC with 3% natural rubber produced the highest fatigue life value compared to the other two mixes. In general, the result of testing and its analysis concluded that the use of natural rubber (latex) can reduce the use of asphalt in the mixture. This can be relified by decreasing the value of OAC in the mixture with natural rubber. The mixture with 3% natural rubber (latex) gives the highest resistance to fatigue cracks in the laboratory.
ISSN:0853-2982
2549-2659
DOI:10.5614/jts.2020.27.3.2