Multilepton signatures from dark matter at the LHC

A bstract Leptonic signatures of Dark Matter (DM) are one of the cleanest ways to discover such a secluded form of matter at high energy colliders. We explore the full parameter space relevant to multi-lepton (2- and 3-lepton) signatures at the Large Hadron Collider (LHC) from representative minimal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2022-09, Vol.2022 (9), p.173-52, Article 173
Hauptverfasser: Belyaev, Alexander, Blumenschein, Ulla, Freegard, Arran, Moretti, Stefano, Sengupta, Dipan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A bstract Leptonic signatures of Dark Matter (DM) are one of the cleanest ways to discover such a secluded form of matter at high energy colliders. We explore the full parameter space relevant to multi-lepton (2- and 3-lepton) signatures at the Large Hadron Collider (LHC) from representative minimal consistent models with scalar and fermion DM. In our analysis, we suggest a new parametrisation of the model parameter spaces in terms of the DM mass and mass differences between DM and its multiplet partners. This parametrisation allows us to explore properties of DM models in their whole parameter space. This approach is generic and quite model-independent since the mass differences are related to the couplings of the DM to the Standard Model (SM) sector. We establish the most up-to-date LHC limits on the inert 2-Higgs Doublet Model (i2HDM) and Minimal Fermion DM (MFDM) model parameter spaces, by using the complementary information stemming from 2- and 3-lepton signatures. We provide a map of LHC efficiencies and cross-section limits for such 2- and 3-lepton signatures allowing one to easily make model-independent reinterpretations of LHC results for analogous classes of models. We also present combined constraints from the LHC, DM relic density and direct search experiments indicating the current status of the i2HDM and MFDM model.
ISSN:1029-8479
1126-6708
1029-8479
DOI:10.1007/JHEP09(2022)173