Direct evidence of sex and a hypothesis about meiosis in Symbiodiniaceae
Dinoflagellates in the family Symbiodiniaceae are obligate endosymbionts of diverse marine invertebrates, including corals, and impact the capacity of their hosts to respond to climate change-driven ocean warming. Understanding the conditions under which increased genetic variation in Symbiodiniacea...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2021-09, Vol.11 (1), p.18838-17, Article 18838 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Dinoflagellates in the family Symbiodiniaceae are obligate endosymbionts of diverse marine invertebrates, including corals, and impact the capacity of their hosts to respond to climate change-driven ocean warming. Understanding the conditions under which increased genetic variation in Symbiodiniaceae arises via sexual recombination can support efforts to evolve thermal tolerance in these symbionts and ultimately mitigate coral bleaching, the breakdown of the coral-Symbiodiniaceae partnership under stress. However, direct observations of meiosis in Symbiodiniaceae have not been reported, despite various lines of indirect evidence that it occurs. We present the first cytological evidence of sex in Symbiodiniaceae based on nuclear DNA content and morphology using Image Flow Cytometry, Cell Sorting and Confocal Microscopy. We show the Symbiodiniaceae species,
Cladocopium latusorum
, undergoes gamete conjugation, zygote formation, and meiosis within a dominant reef-building coral in situ. On average, sex was detected in 1.5% of the cells analyzed (N = 10,000–40,000 cells observed per sample in a total of 20 samples obtained from 3
Pocillopora
colonies). We hypothesize that meiosis follows a two-step process described in other dinoflagellates, in which diploid zygotes form dyads during meiosis I, and triads and tetrads as final products of meiosis II. This study sets the stage for investigating environmental triggers of Symbiodiniaceae sexuality and can accelerate the assisted evolution of a key coral symbiont in order to combat reef degradation. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-021-98148-9 |