A Study of the Electrodeposition of Gold Process in Iodine Leaching Solution

This paper mainly discusses electrodeposition of gold from iodine leaching solution through single-factor testing and explores the influence of gold concentration in catholyte, mass fraction of iodine in anolyte, anolyte n(I2):n(I−), cell voltage, and electrolysis time on the percentage of gold depo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metals (Basel ) 2020-01, Vol.10 (1), p.50
Hauptverfasser: Meng, Qi, Li, Guichun, Kang, Hua, Yan, Xiaohui, Wang, Huiping, Xu, Deyong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper mainly discusses electrodeposition of gold from iodine leaching solution through single-factor testing and explores the influence of gold concentration in catholyte, mass fraction of iodine in anolyte, anolyte n(I2):n(I−), cell voltage, and electrolysis time on the percentage of gold deposition and coulombic efficiency. Moreover, a response surface methodology was adopted to study interactions among variables and influence on the percentage of gold deposition, with mass fraction of iodine in anolyte, anolyte n(I2):n(I−), and cell voltage as variable factors and percentage of gold deposition as the response value. The electrodeposition process was fitted via pseudo first-order kinetics and pseudo second-order kinetics. Finally, the free surface morphology of gold deposited on the cathode plate was observed by scanning electron microscope. Given the results, a principal effect relationship can be concluded between mass fraction of iodine in anolyte, anolyte n(I2):n(I−), cell voltage, and percentage of gold deposition, with cell voltage > anolyte n(I2):n(I−) > mass fraction of iodine in anolyte and a second-order regression equation obtained with percentage of gold deposition as the response value. The optimized process conditions were gold concentration in catholyte 20 mg/L, mass fraction of iodine in anolyte 0.59%, anolyte n(I2):n(I−) is 1:7.5, cell voltage 12.9 V, and electrolysis time 2 h. The average percentage of gold deposition of three confirmatory experiments was 96.43%, a figure very close to the predicted value of the model 97.76%, which proves that the quadratic polynomial model obtained by response surface methodology optimization is feasible and that the electrodeposition of gold process conforms to a pseudo second-order kinetic model. Au can be attached well to the cathode plate and the deposition layer is formed by granular grain accumulation.
ISSN:2075-4701
2075-4701
DOI:10.3390/met10010050