Source Apportionment of PM2.5, PAH and Arsenic Air Pollution in Central Bohemia
The results of air quality monitoring show significantly increased concentrations of polycyclic aromatic hydrocarbons (PAH) and arsenic in the area located near the town of Kladno in Central Bohemia, Czech Republic. The region of interest is historically associated with coal mines and steelworks. So...
Gespeichert in:
Veröffentlicht in: | Environments (Basel, Switzerland) Switzerland), 2021-10, Vol.8 (10), p.107 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The results of air quality monitoring show significantly increased concentrations of polycyclic aromatic hydrocarbons (PAH) and arsenic in the area located near the town of Kladno in Central Bohemia, Czech Republic. The region of interest is historically associated with coal mines and steelworks. Source apportionment using the method of Positive Matrix Factorization (PMF) at three sites has been used to try to explain the reasons of the increased PM2.5, benzo[a]pyrene, and arsenic concentrations in the ambient air. Based on the PMF analysis, nine factors explaining the atmospheric aerosol mass have been identified. The PMF results showed that most of the aerosol mass originated from residential heating (about one third of PM2.5), both primary particles and secondary organic aerosols induced by road traffic (up to approximately 25%), soil and other mineral dust (about 15%), secondary inorganic aerosol ammonium sulfate (up to 16%), ammonium nitrate (up to 14%) and other sulfates (up to 9%). The main source of arsenic and benzo[a]pyrene was residential heating, which accounted for two-thirds and 80% of their total mass, respectively. The results have pointed to the most important measures for effective air quality protection in the area of interest: replacing coal fuel and old boilers used for residential heating in order to reduce arsenic and PAH emissions and mitigate sources of secondary particles precursors to decrease PM concentrations. |
---|---|
ISSN: | 2076-3298 2076-3298 |
DOI: | 10.3390/environments8100107 |