Dimension reduction, cell clustering, and cell-cell communication inference for single-cell transcriptomics with DcjComm

Advances in single-cell transcriptomics provide an unprecedented opportunity to explore complex biological processes. However, computational methods for analyzing single-cell transcriptomics still have room for improvement especially in dimension reduction, cell clustering, and cell-cell communicati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genome Biology 2024-09, Vol.25 (1), p.241-241, Article 241
Hauptverfasser: Ding, Qian, Yang, Wenyi, Xue, Guangfu, Liu, Hongxin, Cai, Yideng, Que, Jinhao, Jin, Xiyun, Luo, Meng, Pang, Fenglan, Yang, Yuexin, Lin, Yi, Liu, Yusong, Sun, Haoxiu, Tan, Renjie, Wang, Pingping, Xu, Zhaochun, Jiang, Qinghua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Advances in single-cell transcriptomics provide an unprecedented opportunity to explore complex biological processes. However, computational methods for analyzing single-cell transcriptomics still have room for improvement especially in dimension reduction, cell clustering, and cell-cell communication inference. Herein, we propose a versatile method, named DcjComm, for comprehensive analysis of single-cell transcriptomics. DcjComm detects functional modules to explore expression patterns and performs dimension reduction and clustering to discover cellular identities by the non-negative matrix factorization-based joint learning model. DcjComm then infers cell-cell communication by integrating ligand-receptor pairs, transcription factors, and target genes. DcjComm demonstrates superior performance compared to state-of-the-art methods.
ISSN:1474-760X
1474-7596
1474-760X
DOI:10.1186/s13059-024-03385-6