Prediction of diabetic kidney disease risk using machine learning models: A population-based cohort study of Asian adults

Machine learning (ML) techniques improve disease prediction by identifying the most relevant features in multidimensional data. We compared the accuracy of ML algorithms for predicting incident diabetic kidney disease (DKD). We utilized longitudinal data from 1365 Chinese, Malay, and Indian particip...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:eLife 2023-09, Vol.12
Hauptverfasser: Sabanayagam, Charumathi, He, Feng, Nusinovici, Simon, Li, Jialiang, Lim, Cynthia, Tan, Gavin, Cheng, Ching Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Machine learning (ML) techniques improve disease prediction by identifying the most relevant features in multidimensional data. We compared the accuracy of ML algorithms for predicting incident diabetic kidney disease (DKD). We utilized longitudinal data from 1365 Chinese, Malay, and Indian participants aged 40-80 y with diabetes but free of DKD who participated in the baseline and 6-year follow-up visit of the Singapore Epidemiology of Eye Diseases Study (2004-2017). Incident DKD (11.9%) was defined as an estimated glomerular filtration rate (eGFR)
ISSN:2050-084X
2050-084X
DOI:10.7554/eLife.81878