Existence and nonexistence of solutions for an approximation of the Paneitz problem on spheres
This paper is devoted to studying the nonlinear problem with slightly subcritical and supercritical exponents ( S ± ε ) : Δ 2 u − c n Δ u + d n u = K u n + 4 n − 4 ± ε , u > 0 on S n , where n ≥ 5 , ε is a small positive parameter and K is a smooth positive function on S n . We construct some sol...
Gespeichert in:
Veröffentlicht in: | Boundary value problems 2023-10, Vol.2023 (1), p.103-14, Article 103 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper is devoted to studying the nonlinear problem with slightly subcritical and supercritical exponents
(
S
±
ε
)
:
Δ
2
u
−
c
n
Δ
u
+
d
n
u
=
K
u
n
+
4
n
−
4
±
ε
,
u
>
0
on
S
n
, where
n
≥
5
,
ε
is a small positive parameter and
K
is a smooth positive function on
S
n
. We construct some solutions of
(
S
−
ε
)
that blow up at one critical point of
K
. However, we prove also a nonexistence result of single-peaked solutions for the supercritical equation
(
S
+
ε
)
. |
---|---|
ISSN: | 1687-2770 1687-2762 1687-2770 |
DOI: | 10.1186/s13661-023-01789-0 |