Existence and nonexistence of solutions for an approximation of the Paneitz problem on spheres

This paper is devoted to studying the nonlinear problem with slightly subcritical and supercritical exponents ( S ± ε ) : Δ 2 u − c n Δ u + d n u = K u n + 4 n − 4 ± ε , u > 0 on S n , where n ≥ 5 , ε is a small positive parameter and K is a smooth positive function on S n . We construct some sol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Boundary value problems 2023-10, Vol.2023 (1), p.103-14, Article 103
1. Verfasser: Ould Bouh, Kamal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper is devoted to studying the nonlinear problem with slightly subcritical and supercritical exponents ( S ± ε ) : Δ 2 u − c n Δ u + d n u = K u n + 4 n − 4 ± ε , u > 0 on S n , where n ≥ 5 , ε is a small positive parameter and K is a smooth positive function on S n . We construct some solutions of ( S − ε ) that blow up at one critical point of K . However, we prove also a nonexistence result of single-peaked solutions for the supercritical equation ( S + ε ) .
ISSN:1687-2770
1687-2762
1687-2770
DOI:10.1186/s13661-023-01789-0