Linear Diophantine Fuzzy Einstein Aggregation Operators for Multi-Criteria Decision-Making Problems

The linear Diophantine fuzzy set (LDFS) has been proved to be an efficient tool in expressing decision maker (DM) evaluation values in multicriteria decision-making (MCDM) procedure. To more effectively represent DMs’ evaluation information in complicated MCDM process, this paper proposes a MCDM met...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematics (Hidawi) 2021, Vol.2021, p.1-31
Hauptverfasser: Iampan, Aiyared, García, Gustavo Santos, Riaz, Muhammad, Athar Farid, Hafiz Muhammad, Chinram, Ronnason
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The linear Diophantine fuzzy set (LDFS) has been proved to be an efficient tool in expressing decision maker (DM) evaluation values in multicriteria decision-making (MCDM) procedure. To more effectively represent DMs’ evaluation information in complicated MCDM process, this paper proposes a MCDM method based on proposed novel aggregation operators (AOs) under linear Diophantine fuzzy set (LDFS). A q-Rung orthopair fuzzy set (q-ROFS), Pythagorean fuzzy set (PFS), and intuitionistic fuzzy set (IFS) are rudimentary concepts in computational intelligence, which have diverse applications in modeling uncertainty and MCDM. Unfortunately, these theories have their own limitations related to the membership and nonmembership grades. The linear Diophantine fuzzy set (LDFS) is a new approach towards uncertainty which has the ability to relax the strict constraints of IFS, PFS, and q–ROFS by considering reference/control parameters. LDFS provides an appropriate way to the decision experts (DEs) in order to deal with vague and uncertain information in a comprehensive way. Under these environments, we introduce several AOs named as linear Diophantine fuzzy Einstein weighted averaging (LDFEWA) operator, linear Diophantine fuzzy Einstein ordered weighted averaging (LDFEOWA) operator, linear Diophantine fuzzy Einstein weighted geometric (LDFEWG) operator, and linear Diophantine fuzzy Einstein ordered weighted geometric (LDFEOWG) operator. We investigate certain characteristics and operational laws with some illustrations. Ultimately, an innovative approach for MCDM under the linear Diophantine fuzzy information is examined by implementing suggested aggregation operators. A useful example related to a country’s national health administration (NHA) to create a fully developed postacute care (PAC) model network for the health recovery of patients suffering from cerebrovascular diseases (CVDs) is exhibited to specify the practicability and efficacy of the intended approach.
ISSN:2314-4629
2314-4785
DOI:10.1155/2021/5548033