Water-Assisted Cold Sintering of Alumina Ceramics in SPS Conditions
A developing energy-saving approach of cold sintering in a pure aqueous medium was applied to the preparation of α-Al2O3 ceramics and performed on spark plasma sintering equipment. The initial γ-Al(OH)3 and γ-AlOOH powders and the cold-sintered ceramics were studied by X-ray diffraction analysis, in...
Gespeichert in:
Veröffentlicht in: | Ceramics 2023-06, Vol.6 (2), p.1113-1128 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A developing energy-saving approach of cold sintering in a pure aqueous medium was applied to the preparation of α-Al2O3 ceramics and performed on spark plasma sintering equipment. The initial γ-Al(OH)3 and γ-AlOOH powders and the cold-sintered ceramics were studied by X-ray diffraction analysis, infrared spectroscopy, thermal analysis, and scanning electron microscopy to reveal the chemical and structural transformations they experienced during the cold sintering. At 450 °C and 70 MPa, initially γ-AlOOH transformed into a fragile α-Al2O3 material. Porous α-Al2O3 ceramics with about 60% porosity were obtained after cold sintering of γ-Al(OH)3 in the same conditions combined with subsequent annealing at 1250 °C for 3 h. The role of water molecules in the studied processes was considered as the enhancement of structural mobility in the cold-sintered material due to its reversible hydroxylation similar to earlier investigated supercritical water actions on the precursors during α-Al2O3 formation. Further improvement of the cold sintering setup and regimens would open prospects in α-Al2O3 ceramics manufacturing by an ecologically benign route. |
---|---|
ISSN: | 2571-6131 2571-6131 |
DOI: | 10.3390/ceramics6020066 |