Gradient estimates for the double phase problems in the whole space
This paper presents Calderón-Zygmund estimates for the weak solutions of a class of nonuniformly elliptic equations in $ \mathbb{R}^n $, which are obtained through the use of the iteration-covering method. More precisely, a global Calderón-Zygmund type result \begin{document}$ \begin{equation*} |f...
Gespeichert in:
Veröffentlicht in: | Electronic research archive 2023-01, Vol.31 (12), p.7349-7364 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents Calderón-Zygmund estimates for the weak solutions of a class of nonuniformly elliptic equations in $ \mathbb{R}^n $, which are obtained through the use of the iteration-covering method. More precisely, a global Calderón-Zygmund type result
\begin{document}$ \begin{equation*} |f|^{p_1}+a(x)|f|^{p_2}\in L^s(\mathbb{R}^n) \Rightarrow |Du|^{p_1}+a(x)|Du|^{p_2}\in L^s(\mathbb{R}^n)\quad {\rm for \; any} \; s>1 \end{equation*} $\end{document}
is established for the weak solutions of
\begin{document}$ \begin{equation*} -{\rm div}A(x, Du) = -{\rm div}F(x, f) \quad {\rm in} \; \mathbb{R}^n, \end{equation*} $\end{document}
which are modeled on
\begin{document}$ \begin{equation*} -{\rm div}(|Du|^{p_1-2}Du+a(x)|Du|^{p_2-2}Du) = -{\rm div}(|f|^{p_1-2}f+a(x)|f|^{p_2-2}f), \end{equation*} $\end{document}
where $ 0\leq a(\cdot)\in C^{0, \alpha}(\mathbb{R}^n), \; \alpha\in (0, 1] $ and $ 1 < p_1 < p_2 < p_1+\frac{\alpha p_1}{n} $. |
---|---|
ISSN: | 2688-1594 2688-1594 |
DOI: | 10.3934/era.2023372 |