Self-cloning CRISPR/Cpf1 facilitated genome editing in Saccharomyces cerevisiae

Background Saccharomyces cerevisiae is one of the most important industrial microorganisms. A robust genome editing tool is vital for both fundamental research and applications. To save the time and labor consumed in the procedure of genome editing, a self-cloning CRISPR/Cpf1 system (scCRISPR/Cpf1),...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioresources and Bioprocessing 2018-07, Vol.5 (1), p.1-12, Article 36
Hauptverfasser: Li, Zhen-Hai, Wang, Feng-Qing, Wei, Dong-Zhi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background Saccharomyces cerevisiae is one of the most important industrial microorganisms. A robust genome editing tool is vital for both fundamental research and applications. To save the time and labor consumed in the procedure of genome editing, a self-cloning CRISPR/Cpf1 system (scCRISPR/Cpf1), in which a self-cleaving plasmid and PCR-generated site-specific crRNA fragment were included, was developed. Results Using scCRISPR/Cpf1 as the genetic tool, simple and fast singleplex and multiplex genomic integration of in vivo assembled DNA parts were investigated. Moreover, we validate the applicability of scCRISPR/Cpf1 for cell factory development by creating a patchoulol production strain through two rounds of iterative genomic integration. The results showed that scCRISPR/Cpf1 enables singleplex and tripleplex genomic integration of in vivo assembled DNA parts with efficiencies of 80 and 32%, respectively. Furthermore, the patchoulol production strain was successfully and rapidly engineered and optimized through two rounds of iterative genomic integration by scCRISPR/Cpf1. Conclusions scCRISPR/Cpf1 allows for CRISPR/Cpf1-facilitated genome editing by circumventing the step to clone a site-specific crRNA plasmid without compromising efficiency in S. cerevisiae . This method enriches the current set of tools available for strain engineering in S. cerevisiae.
ISSN:2197-4365
2197-4365
DOI:10.1186/s40643-018-0222-8