Ferromagnetism on an atom-thick & extended 2D metal-organic coordination network

Ferromagnetism is the collective alignment of atomic spins that retain a net magnetic moment below the Curie temperature, even in the absence of external magnetic fields. Reducing this fundamental property into strictly two-dimensions was proposed in metal-organic coordination networks, but thus far...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2024-02, Vol.15 (1), p.1858-1858, Article 1858
Hauptverfasser: Lobo-Checa, Jorge, Hernández-López, Leyre, Otrokov, Mikhail M., Piquero-Zulaica, Ignacio, Candia, Adriana E., Gargiani, Pierluigi, Serrate, David, Delgado, Fernando, Valvidares, Manuel, Cerdá, Jorge, Arnau, Andrés, Bartolomé, Fernando
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ferromagnetism is the collective alignment of atomic spins that retain a net magnetic moment below the Curie temperature, even in the absence of external magnetic fields. Reducing this fundamental property into strictly two-dimensions was proposed in metal-organic coordination networks, but thus far has eluded experimental realization. In this work, we demonstrate that extended, cooperative ferromagnetism is feasible in an atomically thin two-dimensional metal-organic coordination network, despite only ≈ 5% of the monolayer being composed of Fe atoms. The resulting ferromagnetic state exhibits an out-of-plane easy-axis square-like hysteresis loop with large coercive fields over 2 Tesla, significant magnetic anisotropy, and persists up to T C  ≈ 35 K. These properties are driven by exchange interactions mainly mediated by the molecular linkers. Our findings resolve a two decade search for ferromagnetism in two-dimensional metal-organic coordination networks. Despite having all the ingredients required for the formation of two-dimensional ferromagnetism, achieving such a magnetic state in atomically thin metal-organic coordination networks has proved to be a persistent challenge. Here, Lobo-Checa et al demonstrate 2Dferromagnetism in a self-assembled network, exhibiting coercive fields over 2 Tesla and a Curie temperature of 35K.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-024-46115-z