Determining the Targets of Fluopsin C Action on Gram-Negative and Gram-Positive Bacteria

The antibiotic activity of metalloantibiotic compounds has been evaluated since the 90s, and many different modes of action were characterized. In the last decade, the effects of secondary metabolites produced by Pseudomonas aeruginosa LV strain, including a cupric compound identified as Fluopsin C,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in microbiology 2020-06, Vol.11, p.1076-1076
Hauptverfasser: Navarro, Miguel Octavio Pérez, Dilarri, Guilherme, Simionato, Ane Stefano, Grzegorczyk, Kathlen, Dealis, Mickely Liuti, Cano, Barbara Gionco, Barazetti, André Riedi, Afonso, Leandro, Chryssafidis, Andreas Lazaros, Ferreira, Henrique, Andrade, Galdino
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The antibiotic activity of metalloantibiotic compounds has been evaluated since the 90s, and many different modes of action were characterized. In the last decade, the effects of secondary metabolites produced by Pseudomonas aeruginosa LV strain, including a cupric compound identified as Fluopsin C, were tested against many pathogenic bacteria strains, proving their high antibiotic activity. In the present study, the bactericidal mechanisms of action of Fluopsin C and the semi-purified fraction F4A were elucidated. The results found in electron microscopy [scanning electron microscopy (SEM) and transmission electronic microscopy (TEM)] demonstrated that both Fluopsin C and F4A are affecting the cytoplasmatic membrane of Gram-positive and Gram-negative bacteria. These results were confirmed by fluorescence microscopy, where these bacteria presented permeabilization of their cytoplasmatic membranes after contact with the semi-purified fraction and pure compound. Using electronic and fluorescence microscopy, along with bacterial mutant strains with marked divisional septum, the membrane was defined as the primary target of Fluopsin C in the tested bacteria.
ISSN:1664-302X
1664-302X
DOI:10.3389/fmicb.2020.01076