Entropy optimized flow of Sutterby nanomaterial subject to porous medium: Buongiorno nanofluid model

Owing to enhanced thermal impact of nanomaterials, different applications are suggested in engineering and industrial systems like heat transfer devices, energy generation, extrusion processes, engine cooling, thermal systems, heat exchanger, chemical processes, manufacturing systems, hybrid-powered...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Heliyon 2023-07, Vol.9 (7), p.e17784-e17784, Article e17784
Hauptverfasser: Li, Shuguang, Khan, M. Ijaz, Alruqi, Adel Bandar, Khan, Sami Ullah, Abdullaev, Sherzod Shukhratovich, Fadhl, Bandar M., Makhdoum, Basim M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Owing to enhanced thermal impact of nanomaterials, different applications are suggested in engineering and industrial systems like heat transfer devices, energy generation, extrusion processes, engine cooling, thermal systems, heat exchanger, chemical processes, manufacturing systems, hybrid-powered plants etc. The current communication concerns the optimized flow of Sutterby nanofluid due to stretched surface in view of different thermal sources. The investigation is supported with the applications of external heat source, magnetic force and radiative phenomenon. The irreversibility investigation is deliberated with implementation of thermodynamics second law. The thermophoresis and random movement characteristics are also studied. Additionally, first order binary reaction is also examined. The nonlinear system of the governing problem is obtained which are numerically computed by s method. The physical aspects of prominent flow parameters are attributed graphically. Further, the analysis for entropy generation and Bejan number is focused. It is observed that the velocity profile increases due to Reynolds number and Deborah number. Larger Schmidt number reduces the concentration distribution. Further, the entropy generation is improved against Reynolds number and Brinkman parameter.
ISSN:2405-8440
2405-8440
DOI:10.1016/j.heliyon.2023.e17784