Flexural strength and surface hardness of nanocomposite denture base resins

Higher bending forces during chewing and occlusal loading can lead to the deformation of denture bases. Roughness and microbial adhesion can be the result of improper care of the denture. Many attempts have been made to improve the properties of denture bases through the addition of different materi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Heliyon 2024-11, Vol.10 (22), p.e40442, Article e40442
Hauptverfasser: Waghmare, Anagha, Nair, Chandana, Shukla, Anuj K., Chaturvedi, Mudita, Bhagat, Tushar Vitthalrao, Alsubaiy, Ebrahim Fihaid, Suleman, Ghazala, Khader, Mohasin Abdul, Chaturvedi, Saurabh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Higher bending forces during chewing and occlusal loading can lead to the deformation of denture bases. Roughness and microbial adhesion can be the result of improper care of the denture. Many attempts have been made to improve the properties of denture bases through the addition of different materials. The present study aimed to evaluate the surface hardness and flexural strength (FS) of newly formulated nanocomposite denture base resin made by adding zinc oxide (ZnO) and titanium dioxide (TiO2) nanoparticles in heat polymerized polymethyl methacrylate resin in concentrations of 1 % and 2 %. Rectangular metal master dies of dimension 65mm × 10mm × 3.3 mm for flexural strength and 30mm × 10mm × 3 mm for surface hardness were made. These dies were duplicated in 120 acrylic resin samples. These samples were divided into five groups in which group I is control group samples in conventional resin and group II,III, IV &V contained 1 % and 2 % concentrations of ZnO & TiO2 nanoparticles in heat cure acrylic resin. The processing and finishing of the models were done. Flexural strength was measured using a universal testing machine and surface hardness using a Rockwell hardness testing machine. The minimum SH reported was 101.7 HRM while FS was 81.1 MPa and maximum was 118.7 HRM and 131.8 MPa respectively. The results showed that group IV containing 1 % TiO2 nanoparticles showed the highest surface hardness values whereas the flexural strength was highest in group II containing 1 % ZnO nanoparticles. The analysis of variance showed a p value of
ISSN:2405-8440
2405-8440
DOI:10.1016/j.heliyon.2024.e40442