Association of mutations in Mycobacterium tuberculosis complex (MTBC) respiration chain genes with hyper-transmission

The respiratory chain plays a key role in the growth of Mycobacterium tuberculosis complex (MTBC). However, the exact regulatory mechanisms of this system still need to be elucidated, and only a few studies have investigated the impact of genetic mutations within the respiratory chain on MTBC transm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC genomics 2024-08, Vol.25 (1), p.810-14, Article 810
Hauptverfasser: Li, Yameng, Li, Yifan, Liu, Yao, Kong, Xianglong, Tao, Ningning, Hou, Yawei, Wang, Tingting, Han, Qilin, Zhang, Yuzhen, Long, Fei, Li, Huaichen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The respiratory chain plays a key role in the growth of Mycobacterium tuberculosis complex (MTBC). However, the exact regulatory mechanisms of this system still need to be elucidated, and only a few studies have investigated the impact of genetic mutations within the respiratory chain on MTBC transmission. This study aims to explore the impact of respiratory chain gene mutations on the global spread of MTBC. A total of 13,402 isolates of MTBC were included in this study. The majority of the isolates (n = 6,382, 47.62%) belonged to lineage 4, followed by lineage 2 (n = 5,123, 38.23%). Our findings revealed significant associations between Single Nucleotide Polymorphisms (SNPs) of specific genes and transmission clusters. These SNPs include Rv0087 (hycE, G178T), Rv1307 (atpH, C650T), Rv2195 (qcrA, G181C), Rv2196 (qcrB, G1250T), Rv3145 (nuoA, C35T), Rv3149 (nuoE, G121C), Rv3150 (nuoF, G700A), Rv3151 (nuoG, A1810G), Rv3152 (nuoH, G493A), and Rv3157 (nuoM, A1243G). Furthermore, our results showed that the SNPs of atpH C73G, atpA G271C, qcrA G181C, nuoJ G115A, nuoM G772A, and nuoN G1084T were positively correlated with cross-country transmission clades and cross-regional transmission clades. Our study uncovered an association between mutations in respiratory chain genes and the transmission of MTBC. This important finding provides new insights for future research and will help to further explore new mechanisms of MTBC pathogenicity. By uncovering this association, we gain a more complete understanding of the processes by which MTBC increases virulence and spread, providing potential targets and strategies for preventing and treating tuberculosis.
ISSN:1471-2164
1471-2164
DOI:10.1186/s12864-024-10726-z