Effect of N-Acetyl-L-cysteine on Activity of Doxycycline against Biofilm-Forming Bacterial Strains

Biofilm-forming bacteria are associated with difficult-to-cure bacterial infections in veterinary patients. According to previous studies, N-acetyl-L-cysteine (NAC) showed an inhibitory effect on biofilm formation when it was applied in combination with beta-lactam antibiotics and fluoroquinolones....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Antibiotics (Basel) 2023-07, Vol.12 (7), p.1187
Hauptverfasser: Petkova, Tsvetelina, Rusenova, Nikolina, Danova, Svetla, Milanova, Aneliya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Biofilm-forming bacteria are associated with difficult-to-cure bacterial infections in veterinary patients. According to previous studies, N-acetyl-L-cysteine (NAC) showed an inhibitory effect on biofilm formation when it was applied in combination with beta-lactam antibiotics and fluoroquinolones. The lack of information about the effect of NAC on doxycycline activity against biofilm-forming strains was the reason for conducting this study. ( ) ATCC 25923, O74, ( ) ATCC 25922 and ( ) ATCC 27853 were used to evaluate the activity of doxycycline with and without addition of NAC on planktonic bacteria and on biofilm formation. The minimum inhibitory concentrations (MICs) of doxycycline were not affected by NAC for Gram-negative strains and were found to be two times higher for the strains of . The minimum biofilm inhibitory concentrations (MBICs) for Gram-negative bacteria (2 μg/mL for ATCC 25922 and 32 μg/mL for ATCC 27853), determined using a standard safranin colorimetric assay, were higher than the MICs (0.5 and 4 μg/mL, respectively). The data suggest that the combinations of doxycycline and NAC could stimulate the growth of planktonic cells of and biofilm-forming ATCC 25922. NAC did not affect the strong inhibitory effect of doxycycline on the biofilm formation by the strains of
ISSN:2079-6382
2079-6382
DOI:10.3390/antibiotics12071187