An Approach of Community Search with Minimum Spanning Tree Based on Node Embedding

Community search is a query-oriented variant of community detection problem, and the goal is to retrieve a single community from a given set of nodes. Most of the existing community search methods adopt handcrafted features, so there are some limitations in applications. Our idea is motivated by the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Complexity (New York, N.Y.) N.Y.), 2021, Vol.2021 (1)
Hauptverfasser: Liu, Jinglian, Wang, Daling, Feng, Shi, Zhang, Yifei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Community search is a query-oriented variant of community detection problem, and the goal is to retrieve a single community from a given set of nodes. Most of the existing community search methods adopt handcrafted features, so there are some limitations in applications. Our idea is motivated by the recent advances of node embedding. Node embedding uses deep learning method to obtain feature representation of nodes directly from graph structure automatically and offers a new method to measure the distance between two nodes. In this paper, we propose a two-stage community search algorithm with a minimum spanning tree strategy based on node embedding. At the first stage, we propose a node embedding model NEBRW and map nodes to the points in a low-dimensional vector space. At the second stage, we propose a new definition of community from the distance viewpoint, transform the problem of community search to a variant of minimum spanning tree problem, and uncover the target community with an improved Prim algorithm. We test our algorithm on both synthetic and real-world network datasets. The experimental results show that our algorithm is more effective for community search than baselines.
ISSN:1076-2787
1099-0526
DOI:10.1155/2021/6673444