Determination of factors associated with serum cholesterol response to dairy fat consumption in overweight adults: Secondary analysis from an RCT

Elevated intakes of saturated fatty acids (SFA) can adversely affect serum cholesterol levels. Dairy fat contains ~60% SFA, prompting healthy eating guidelines to recommend low-fat dairy. Physiological, and environmental factors influence inter-individual variance in response to food consumption. Ev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in nutrition (Lausanne) 2022-08, Vol.9, p.945723-945723
Hauptverfasser: O'Connor, Aileen, Feeney, Emma L., Bhargava, Nupur, Noronha, Nessa, Gibney, Eileen R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Elevated intakes of saturated fatty acids (SFA) can adversely affect serum cholesterol levels. Dairy fat contains ~60% SFA, prompting healthy eating guidelines to recommend low-fat dairy. Physiological, and environmental factors influence inter-individual variance in response to food consumption. Evidence exploring the dairy matrix has differing effects of dairy fat consumption on serum cholesterol levels when consumed in the form of cheese. The extent of this variability and determinants of response to dairy fat are currently unknown. The objective of this study was to determine factors associated with lipid metabolism response to a dairy fat intervention, with a focus on serum cholesterol. A 6-week randomized parallel intervention trial was carried out in healthy volunteers (≥50 years, BMI ≥25 kg/m 2 ). Participants ( n = 104) consumed ~40 g dairy fat daily in addition to their usual diet, in 1 of 3 forms: butter, cheese, or reduced-fat cheese and butter. For this analysis, “response” was based on the percentage (%) change in serum total cholesterol (TC), low-density lipoprotein cholesterol (LDL-c), and high-density lipoprotein cholesterol (HDL-c) from pre- to post-intervention. Participants were divided into tertiles for each lipid response. The upper and lower tertiles were used to categorize participants as “responders” and “non-responders.” For TC and LDL-c, response was classified as a decrease, whereas “response” was defined as an increase for HDL-c. Clinical response was also considered, by calculating pre- and post-intervention prevalence of those meeting target levels of cholesterol recommendations. Participants demonstrating the largest % decrease (Tertile 1; “responders”) in TC had significantly higher levels of TC and HDL-c, at baseline, and lower levels of triglycerides (TAGs) compared to those in tertile 3 (i.e., TC non-responders). Those with the largest % decrease in LDL-c (Tertile 1: LDL-c responders) had higher baseline levels of LDL-c and lower levels of TAGs. Multiple regression analysis revealed that the % change in TC and LDL-c was associated with baseline TC, TAG, body weight and high-sensitivity C-reactive protein (hsCRP; P < 0.05). Previous work has demonstrated the dairy food matrix affects lipid response to dairy consumption. This study suggests that phenotypic differences may also influence response to dairy fat in overweight individuals.
ISSN:2296-861X
2296-861X
DOI:10.3389/fnut.2022.945723