Ionospheric Tomography from a Reference GPS/MET Experiment through the IRI Model

In earlier studies, we implemented the Multiplicative Algebraic Reconstruction Technique (MART) to reconstruct two-dimensional ionospheric structures from measured TECs through the receptions of the GPS-to-LEO signals and/or the NNSS-to-ground beacon signals. To examine the accuracy of the reconstru...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:TAO : Terrestrial, atmospheric, and oceanic sciences atmospheric, and oceanic sciences, 2006-03, Vol.17 (1), p.263-276
Hauptverfasser: 蔡龍治(Lung-Chih Tsai), 蔡偉雄(Wei-Hsiung Tsai), 周展毅(Jan-Yin Chou), 劉兆漢(Chao-Han Liu)
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In earlier studies, we implemented the Multiplicative Algebraic Reconstruction Technique (MART) to reconstruct two-dimensional ionospheric structures from measured TECs through the receptions of the GPS-to-LEO signals and/or the NNSS-to-ground beacon signals. To examine the accuracy of the reconstructed image we need ground-based validation systems which are difficult to obtain. However, such comparative investigation is needed if one aims to improve tomography inverse techniques and algorithms. In this study, we propose a simulation scheme to carry out this task. We first simulate the GPS-to-LEO TEC measurements through the IRI model by integrating electron densities along the "straight" ray occultation paths between the GPS and LEO satellite obtained from the real GPS/MET experiment. Contiguous tomographic images are then derived by the MART algorithm within the "reference" GPS/MET experiment. They are verified by comparison with the "true" IRI-modelled ionosphere. We show that simulation/reference results can be used to find the optimal reconstruction strategy in space-based ionospheric tomography.
ISSN:1017-0839
2311-7680
DOI:10.3319/TAO.2006.17.1.263(AA)