Viability and Functionality of Bovine Chromaffin Cells Encapsulated into Alginate-PLL Microcapsules with a Liquefied Inner Core

Implantation of adrenal medullary bovine chromaffin cells (BCC), which synthesize and secrete a combination of pain-reducing neuroactive compounds including catecholamines and opioid peptides, has been proposed for the treatment of intractable cancer pain. Macro- or microencapsulation of such cells...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell transplantation 2006-01, Vol.15 (2), p.121-133
Hauptverfasser: Moustafa, T., Girod, S., Tortosa, F., Li, R., Sol, J. C., Rodriguez, F., Bastide, R., Lazorthes, Y., Sallerin, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Implantation of adrenal medullary bovine chromaffin cells (BCC), which synthesize and secrete a combination of pain-reducing neuroactive compounds including catecholamines and opioid peptides, has been proposed for the treatment of intractable cancer pain. Macro- or microencapsulation of such cells within semi-permeable membranes is expected to protect the transplant from the host's immune system. In the present study, we report the viability and functionality of BCC encapsulated into microcapsules of alginate-poly-L-lysine (PLL) with a liquefied inner core. The experiment was carried out during 44 days. Empty microcapsules were characterized in terms of morphology, permeability, and mechanical resistance. At the same time, the viability and functionality of both encapsulated and nonencapsulated BCC were evaluated in vitro. We obtained viable BCC with excellent functionality: immunocytochemical analysis revealed robust survival of chromaffin cells 30 days after isolation and microencapsulation. HPLC assay showed that encapsulated BCC released catecholamines basally during the time course study. Taken together, these results demonstrate that viable BCC can be successfully encapsulated into alginate-PLL microcapsules with a liquefied inner core.
ISSN:0963-6897
1555-3892
DOI:10.3727/000000006783982106