Improving the Separation Properties of Polybenzimidazole Membranes by Adding Acetonitrile for Organic Solvent Nanofiltration

In research on membranes, the addition of co-solvents to the polymer dope solution is a common method for tuning the morphology and separation performance. For organic solvent nanofiltration (OSN) applications, we synthesized polybenzimidazole (PBI) membranes with high separation properties and stab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Membranes (Basel) 2023-01, Vol.13 (1), p.104
Hauptverfasser: Won, Ga Yeon, Park, Ahrumi, Yoo, Youngmin, Park, You-In, Lee, Jung-Hyun, Kim, In-Chul, Cho, Young Hoon, Park, Hosik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In research on membranes, the addition of co-solvents to the polymer dope solution is a common method for tuning the morphology and separation performance. For organic solvent nanofiltration (OSN) applications, we synthesized polybenzimidazole (PBI) membranes with high separation properties and stability by adding acetonitrile (MeCN) to the dope solution, followed by crosslinking with dibromo-p-xylene. Accordingly, changes in the membrane structure and separation properties were investigated when MeCN was added. PBI/MeCN membranes with a dense and thick active layer and narrow finger-like macrovoids exhibited superior rejection properties in the ethanol solution compared with the pristine PBI membrane. After crosslinking, they displayed superior rejection properties (96.56% rejection of 366-g/mol polypropylene glycol). In addition, the membranes demonstrated stable permeances for various organic solvents, including acetone, methanol, ethanol, toluene, and isopropyl alcohol. Furthermore, to evaluate the feasibility of the modified PBI OSN membranes, ecamsule, a chemical product in the fine chemical industry, was recovered. Correspondingly, the efficient recovery of ecamsule from a toluene/methanol solution using the OSN process with PBI/MeCN membranes demonstrated their applicability in many fine chemical industries.
ISSN:2077-0375
2077-0375
DOI:10.3390/membranes13010104