Assessing the Operation System of Fire Alarm Systems for Detection Line and Circuit Devices with Various Damage Intensities

The paper presents a method for assessing operation processes for Fire Alarm Systems (FAS) applied in civil structures, based on use analysis. Individual FAS devices include components with varying ‘lifetimes’ and damage intensities λ. This is because these elements are operated in different interna...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) 2022-05, Vol.15 (9), p.3066
Hauptverfasser: Paś, Jacek, Rosiński, Adam, Wiśnios, Michał, Stawowy, Marek
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The paper presents a method for assessing operation processes for Fire Alarm Systems (FAS) applied in civil structures, based on use analysis. Individual FAS devices include components with varying ‘lifetimes’ and damage intensities λ. This is because these elements are operated in different internal and external environments. Probability distributions with various damage λ and recovery µ intensity values must, hence, be taken into account for the FAS operation process and to determine the R(t) reliability. The life cycle of elements comprising a FAS can be divided into three distinguishing time periods. The first is the so-called ‘childhood’. The second, the longest, is characterized by damage intensity λ = const, and the third period is where FAS is unfit more frequently. Based on knowledge of actual FAS operation process data, it is possible to determine damage λ and recovery µ intensity parameters. Such data can be employed to determine FAS reliability parameters within the presented service life intervals. The authors of the article first discuss the basic issues associated with FAS, followed by analyzing the current status of the topic. They also present power supply matters and system solution examples, develop an operation process model and determine selected operational indicators for the structures in question. The paper ends with conclusions.
ISSN:1996-1073
1996-1073
DOI:10.3390/en15093066