Evidence against the peroxisome proliferator-activated receptor alpha (PPARalpha) as the mediator for polyunsaturated fatty acid suppression of hepatic L-pyruvate kinase gene transcription

The glycolytic enzyme, L-pyruvate kinase (L-PK), plays an important role in hepatic glucose metabolism. Insulin and glucose induce L-PK gene expression, while glucagon and polyunsaturated fatty acids (PUFA) inhibit L-PK gene expression. We have been interested in defining the PUFA regulation of L-PK...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of lipid research 2000-05, Vol.41 (5), p.742-751
Hauptverfasser: Pan, D A, Mater, M K, Thelen, A P, Peters, J M, Gonzalez, F J, Jump, D B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The glycolytic enzyme, L-pyruvate kinase (L-PK), plays an important role in hepatic glucose metabolism. Insulin and glucose induce L-PK gene expression, while glucagon and polyunsaturated fatty acids (PUFA) inhibit L-PK gene expression. We have been interested in defining the PUFA regulation of L-PK. The cis-regulatory target for PUFA action includes an imperfect direct repeat (DR1) that binds HNF-4. HNF4 plays an ancillary role in the insulin/glucose-mediated transactivation of the L-PK gene. Because the fatty acid-activated nuclear receptor, peroxisome proliferator-activated receptor (PPARalpha), binds DR1-like elements and has been reported to interfere with HNF4 action, we examined the role PPARalpha plays in the regulation of L-PK gene transcription. Feeding rats either fish oil or the potent PPARalpha activator, WY14,643, suppressed rat hepatic L-PK mRNA and gene transcription. The PPARalpha-null mouse was used to evaluate the role of the PPARalpha in hepatic transcriptional control of L-PK. While WY14,643 control of L-PK gene expression required the PPARalpha, PUFA regulation of L-PK gene expression was independent of the PPARalpha. Transfection studies in cultured primary hepatocytes localized the cis-regulatory target for WY14,643/PPARalpha action to the L-PK HNF4 binding site. However, PPARalpha/RXRalpha heterodimers did not bind this region. Although both WY14,643 and PUFA suppress L-PK gene transcription through the same element, PUFA regulation of L-PK does not require the PPARalpha and PPARalpha/RXRalpha does not bind the L-PK promoter. These studies suggest that other intermediary factors are involved in both the PUFA and PPARalpha regulation of L-PK gene transcription.
ISSN:0022-2275
DOI:10.1016/S0022-2275(20)32383-X