q2-longitudinal: Longitudinal and Paired-Sample Analyses of Microbiome Data
Studies of host-associated and environmental microbiomes often incorporate longitudinal sampling or paired samples in their experimental design. Longitudinal sampling provides valuable information about temporal trends and subject/population heterogeneity, offering advantages over cross-sectional an...
Gespeichert in:
Veröffentlicht in: | mSystems 2018-11, Vol.3 (6) |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Studies of host-associated and environmental microbiomes often incorporate longitudinal sampling or paired samples in their experimental design. Longitudinal sampling provides valuable information about temporal trends and subject/population heterogeneity, offering advantages over cross-sectional and pre-post study designs. To support the needs of microbiome researchers performing longitudinal studies, we developed q2-longitudinal, a software plugin for the QIIME 2 microbiome analysis platform (https://qiime2.org). The q2-longitudinal plugin incorporates multiple methods for analysis of longitudinal and paired-sample data, including interactive plotting, linear mixed-effects models, paired differences and distances, microbial interdependence testing, first differencing, longitudinal feature selection, and volatility analyses. The q2-longitudinal package (https://github.com/qiime2/q2-longitudinal) is open-source software released under a 3-clause Berkeley Software Distribution (BSD) license and is freely available, including for commercial use.
Longitudinal sampling provides valuable information about temporal trends and subject/population heterogeneity. We describe q2-longitudinal, a software plugin for longitudinal analysis of microbiome data sets in QIIME 2. The availability of longitudinal statistics and visualizations in the QIIME 2 framework will make the analysis of longitudinal data more accessible to microbiome researchers. |
---|---|
ISSN: | 2379-5077 2379-5077 |
DOI: | 10.1128/MSYSTEMS.00219-18 |