Synthesis of Magnetic Short-Channel Mesoporous Silica SBA-15 Modified with a Polypyrrole/Polyaniline Copolymer for the Removal of Mercury Ions from Aqueous Solution
A novel magnetic short-channel mesoporous silica SBA-15 composite adsorbent was prepared by the copolymerization of pyrrole and aniline. The prepared novel nanoadsorbent polypyrrole–polyaniline/CoFe2O4-SBA-15 (PPy-PANI/M-SBA-15) has a significant adsorption effect on heavy metal mercury ions. The ba...
Gespeichert in:
Veröffentlicht in: | ACS omega 2021-10, Vol.6 (39), p.25791-25806 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A novel magnetic short-channel mesoporous silica SBA-15 composite adsorbent was prepared by the copolymerization of pyrrole and aniline. The prepared novel nanoadsorbent polypyrrole–polyaniline/CoFe2O4-SBA-15 (PPy-PANI/M-SBA-15) has a significant adsorption effect on heavy metal mercury ions. The batch adsorption experiment was carried out to study the effects of various parameters including solution pH, initial concentration (C 0), adsorbent dose (dosage), temperature (T), and contact time on the adsorption effect. The analysis results of the response surface method (RSM) and central composite design (CCD) show that the importance for adsorption factors is pH > C 0 > T > dosage, and the maximum capacity of PPy-PANI/M-SBA-15 is 346.2 mg/g under the optimal conditions of pH = 6.7, T = 310 K, C 0 = 29.5 mg/L, and a dosage of 0.044 g/L. The pseudo-second-order kinetic model and the Langmuir isotherm model simulate the adsorption behavior of mercury ions. In addition, thermodynamic parameters indicate self-heating and reversible adsorption processes. A covalent bond is formed between the nitrogen-containing functional group and the mercury ions. Excellent magnetic properties and high reproducibility indicate that PPy-PANI/M-SBA-15 has excellent recyclability and environmentally friendly properties and can become a potential heavy metal ion adsorbent in practical applications. |
---|---|
ISSN: | 2470-1343 2470-1343 |
DOI: | 10.1021/acsomega.1c04249 |